Realization of some Galois representations of low degree in Mordell-Weil groups

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Realization of Some Galois Representations of Low Degree in Mordell-weil Groups

For example, suppose that G ∼= S9 and H ∼= S8, where Sn denotes the symmetric group on n letters. Then ρ is one of the two absolutely irreducible representations of G of dimension 8, and according to our theorem there exists an elliptic curve E over M such that ρ occurs in Q⊗E(K). The other absolutely irreducible representation of G of dimension 8 is ρ ⊗ , where is the “sign” character of G, an...

متن کامل

Visibility of Mordell-Weil Groups

We introduce a notion of visibility for Mordell-Weil groups, make a conjecture about visibility, and support it with theoretical evidence and data. These results shed new light on relations between Mordell-Weil and Shafarevich-Tate groups. 11G05, 11G10, 11G18, 11Y40

متن کامل

Discrete Logarithms and Mordell-Weil Groups

Let Ep be an elliptic curve over a prime finite field Fp, p ≥ 5, and Pp, Qp ∈ Ep(Fp). The elliptic curve discrete logarithm problem, ECDLP, on Ep is to find mp ∈ Fp such that Qp = mpPp if Qp ∈ 〈Pp〉. We propose an algorithm to attack the ECDLP relying on a Hasse principle detecting linear dependence in Mordell-Weil groups of elliptic curves via a finite number of reductions.

متن کامل

Singular Plane Curves and Mordell-Weil Groups of Jacobians

This note explores the method of A. Néron [5] for constructing elliptic curves of (fairly) high rank over Q . Néron’s basic idea is very simple: although the moduli space of elliptic curves is only 1-dimensional, the vector space of homogeneous cubic polynomials in three variables is 10-dimensional. Therefore, one can construct elliptic curves which pass through any given 9 rational points. Wit...

متن کامل

Complete characterization of the Mordell-Weil group of some families of elliptic curves

 The Mordell-Weil theorem states that the group of rational points‎ ‎on an elliptic curve over the rational numbers is a finitely‎ ‎generated abelian group‎. ‎In our previous paper, H‎. ‎Daghigh‎, ‎and S‎. ‎Didari‎, On the elliptic curves of the form $ y^2=x^3-3px$‎, ‎‎Bull‎. ‎Iranian Math‎. ‎Soc‎.‎‎ 40 (2014)‎, no‎. ‎5‎, ‎1119--1133‎.‎, ‎using Selmer groups‎, ‎we have shown that for a prime $p...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Mathematical Research Letters

سال: 1997

ISSN: 1073-2780,1945-001X

DOI: 10.4310/mrl.1997.v4.n1.a11